EconPapers    
Economics at your fingertips  
 

Energy harvesting with the piezoelectric material integrated shoe

Anil Can Turkmen and Cenk Celik

Energy, 2018, vol. 150, issue C, 556-564

Abstract: In our times, the importance of energy efficiency is known by anyone. Besides, it is possible to reclaim the energy consumed by means of the developed technology. In this study, it is aimed to reclaim the energy transferred to the ground while people are walking in their daily lives by using piezoelectric materials, which convert mechanical energy into electrical energy. Having designed a sole to serve this goal, different piezoelectric materials are placed into the sole. Its behaviors under human weight are observed using computer software. For this reason, parametric analyses were carried out using 50, 60, 70, 80, and 90 kg, PZT-5H and PZT-8 piezoelectric ceramics and frames made of steel and aluminum materials as holding bodies of piezoelectric ceramics as human bodies. As a result of the analysis, a system of PZT-5H piezoelectric ceramic with a steel frame integrated into a human shoe of a weight of 90 kg used, showing that 0.4% of the applied force can be harvested to 1.43 mW of electrical power.

Keywords: Piezoelectric; Energy harvesting; Human walking; Shoe-based generator; PZT; Comsol multiphysics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217322028
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:150:y:2018:i:c:p:556-564

DOI: 10.1016/j.energy.2017.12.159

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:556-564