EconPapers    
Economics at your fingertips  
 

Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator

Bo Zeng, Huiming Duan, Yun Bai and Wei Meng

Energy, 2018, vol. 151, issue C, 238-249

Abstract: China has the richest shale gas resources worldwide. However, the exploitation of shale gas in China is very recent, and historical data on the output of shale gas are extremely limited (only five data points exist). Consequently, common mathematical models designed for use with big data cannot be used to forecast the shale gas output in China. Grey models can be constructed by using small samples; however, traditional grey models have the drawback of 'misplaced replacement' during the conversion from a difference equation to a differential equation. Thus, a new unbiased grey prediction model called UGM(1,1) is proposed and optimised in this study. A grey weakening buffer operator was employed to pre-process the primary data on Chinese shale gas output to eliminate the contradiction between the prediction results of models and the conclusions of qualitative analysis. The UGM(1,1) model was then used to simulate the output of shale gas in China, and found to outperform other grey models. Finally, we forecasted the output of shale gas in China from 2017 to 2025, and analysed the rationality of the prediction data. The study findings will be of important reference value for use by the Chinese government to formulate energy policies.

Keywords: China's shale-gas output; Prediction; UGM(1,1); Grey weakening buffer operator (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421830447X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:151:y:2018:i:c:p:238-249

DOI: 10.1016/j.energy.2018.03.045

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:238-249