A novel energy harvesting device for ultralow frequency excitation
Feng Wang,
Xiuting Sun and
Jian Xu
Energy, 2018, vol. 151, issue C, 250-260
Abstract:
In recent decades, energy harvesting from external vibration with ultralow frequency has been investigated intensively. A novel energy harvesting device with adjustable nonlinearity for ultralow frequency excitation is proposed and analyzed in this study. The energy harvesting device is made of a mass attached to the base by Elastic Steel Slices (ESSs) and a pair of Quadrilateral-Linkage Structures (QLSs). With the mathematical model, theoretical studies are carried out. The analysis shows that the device is capable for ultralow-frequency vibration energy harvesting since it has adjustable resonance frequency band. With the appearance of the adjustable nonlinearity, the system has a wide band for resonance by the utilization of multi-steady states. Experimental prototypes are assembled and tested. The experimental results show that the beginning frequency of effective energy harvesting can be reduced by over 50% by assembling the QLSs to adjust the stiffness property of the system. In addition, although the stiffness of the device is expressed by nonlinear irrational function, we find that the output voltages generated are large, smooth and stable. The results of this study illustrate that the proposed device is a feasible design for collecting energy from ultralow frequency excitation.
Keywords: Energy harvesting; Adjustable nonlinearity; Multiple stable equilibrium; Ultra-low frequency resonance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218304092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:151:y:2018:i:c:p:250-260
DOI: 10.1016/j.energy.2018.03.011
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().