Risk assessment of industrial excess heat recovery in district heating systems
Kristina Lygnerud and
Sven Werner
Energy, 2018, vol. 151, issue C, 430-441
Abstract:
The recovery of industrial excess heat for use in district heating systems can be characterised by great political interest, high potential, low utilisation and often high profitability. These characteristics reveal that barriers are present for its greater utilisation. One identified barrier is the risk that industries with excess heat can terminate their activities, resulting in the loss of heat recovery. Excess heat recovery investments are therefore sometimes rejected, despite them being viable investments. The risk of termination of industrial activities has been assessed by a study of 107 excess heat recoveries in Sweden. The analysis verified that terminated industrial activities are one of two major explanations for terminated heat delivery. The other major reason is substitution by another heat supply. These two explanations correspond to approximately 6% of all annual average heat recoveries. The identified risk factors are small annual heat recovery and the use of heat pumps when low-temperature heat was recovered. The main conclusion is that a small proportion of industrial heat recovery has been lost in Sweden because of terminated industrial activities. The risk premium of losing industrial heat recovery for this specific reason should be considered to be lower than often presumed in feasibility studies.
Keywords: District heating; Excess heat recovery; Risk assessment; Sweden (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218304559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:151:y:2018:i:c:p:430-441
DOI: 10.1016/j.energy.2018.03.047
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().