Gas diffusion layer development using design of experiments for the optimization of a proton exchange membrane fuel cell performance
Brahim Laoun,
Harshal A. Kasat,
Riaz Ahmad and
Arunachala M. Kannan
Energy, 2018, vol. 151, issue C, 689-695
Abstract:
Gas Diffusion Layer (GDL) was optimized to maximize the performance of a Proton Exchange Membrane Fuel Cell (PEMFC) using design of experiments (DoE). The fabrication of the GDLs consisted of using a non-woven carbon paper substrate, coated with a mixture (slurry) of Pureblack Carbon (PB), Vapor Grown Carbon Fiber (VGCF) and the polytetrafluoroethylene (PTFE), all dispersed in water containing Sodium Dodecyl Sulfate (SDS). The concentration of PB and the PTFE in the slurry was organized through the application of a 22 full factorial design of experiments, with the quantity of PB and the quantity of PTFE as the factors. For each GDLs a Membrane-Electrodes Assemblies (MEA) were fabricated using Catalyst Coated Nafion Membrane CCM, in a single cell PEMFC, then the polarization curve was evaluated using H2/Air as well as H2/O2 at various relative humidity (RH) conditions. In addition, each GDLs were characterized by pore size distribution and contact angle using SEM, Goniometer and Hg Porosimeter. It was found that the optimized GDLs exhibited a power density of 487 mW/cm2 (H2/Air, 70 °C, 70% RH,) and 995 mW/cm2 (H2/O2,70 °C, 100% RH) for the optimum composition of 73% PB and 34% PTFE.
Keywords: Design of experiments; PUREBLACK®; Poly-tetrafluoroethylene; Gas diffusion layer; Fuel cell performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421830505X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:151:y:2018:i:c:p:689-695
DOI: 10.1016/j.energy.2018.03.096
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().