Economics at your fingertips  

A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis

Rui Long, Xiaotian Lai, Zhichun Liu and Wei Liu

Energy, 2018, vol. 152, issue C, 896-905

Abstract: A continuous concentration gradient flow electrical energy storage system is presented to store the electricity generated by the renewable energy power, which consists of reverse osmosis, generating concentrated salty streams under the external power input, and pressure retarded osmosis, extracting electricity from the produced Gibbs free energy of mixing. The hybrid system is simulated on the module scale under the perfect membrane assumption. The operation parameters that impact the overall performance of the proposed system are systematically investigated. Results reveal that there exist optimal reverse osmosis and pressure retarded osmosis operation pressures leading to a maximum round-trip energy efficiency under given feed solution distribution factor. The distinct thermodynamically limiting operation regimes are identified based on analytical calculation. In the feed limited regime (FLR), a round-trip energy efficiency of 38.27% has been achieved, indicating its potential application of the proposed energy storage system.

Keywords: Reverse osmosis (RO); Pressure retarded osmosis (PRO); Electrical energy storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-11-10
Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:896-905