Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process
Chunlin Wang,
Yang Liu,
Song Zheng and
Aipeng Jiang
Energy, 2018, vol. 153, issue C, 149-158
Abstract:
Since the mechanism of boiler combustion is extremely complicated and difficult to apply to model and optimize the combustion process directly, data-driven models attract increasingly attention from industry. This paper focuses on the application of Gaussian Process (GP) in optimizing combustion process for reducing NOx emission of a 330 MW boiler. GP is used to model the relationship between the NOx emission characteristic and boiler operation parameters. The hyperparameters of the GP model are optimized via Genetic Algorithm (GA). Based on 670 sets of production data from the 330 MW tangentially fired boiler, two GP models with 13 and 21-inputs are developed, respectively. The experimental result shows that the 21-inputs model provides better prediction performance than 13-inputs model does. The comparison between Support Vector Machines (SVM) and GP is also given under the 21-inputs circumstance. The influences of some inputs are investigated separately. Then, the predicted NOx emission is used as the objective of searching the optimal parameters for the boiler combustion. Under a given production combustion condition, the NOx decreases from 345 ppm to 238 ppm via optimizing the boiler operational parameters using the 21-inputs GP model, which is a reasonable achievement for the coal fired combustion process.
Keywords: Gaussian Process; NOx emission; Boiler combustion; Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218300033
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:153:y:2018:i:c:p:149-158
DOI: 10.1016/j.energy.2018.01.003
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().