Analytic solution to predict the outlet air states of a desiccant wheel with an arbitrary split ratio
Hyungmook Kang,
Sun Choi and
Dae-Young Lee
Energy, 2018, vol. 153, issue C, 301-310
Abstract:
To comprehend the underlying physics of desiccant wheel operation, a feasible analytic solution has been developed from a gas-side resistance model. As a continuation of development, in this study, the analytical model of the previous work is improved by extending the existing model to arbitrary split ratio case. Furthermore, to improve the accuracy for extended operation range of desiccant wheel, the humidity lines on psychrometric chart are separately represented by two gradients, ψp and ψr, from process region and regeneration region. The analytic solution explicitly predicts the temperature and humidity ratio of the outlet air with a simple linear algebra calculation. The outlet air states from the analytical solution are compared with experimental results and with numerical results predicted by a gas-side resistance model according to various design and operation parameters. For various operation condition, the analytic solution demonstrates transient behaviors of the temperature and humidity ratio within the margin of 10% with respect to the root mean square error during whole cycle period, and shows the better prediction in the practical operation range. The simple time-averaged errors, which are more meaningful in practical sense, are surely observed even smaller than the root mean square errors, within 5%.
Keywords: Desiccant wheel; Analytic solution; Gas-side resistance model; Split ratio; Linearization of relative humidity lines (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218305863
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:153:y:2018:i:c:p:301-310
DOI: 10.1016/j.energy.2018.03.177
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().