Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions
Wenjun Zhong,
P. Tamilselvan,
Qian Wang,
Zhixia He,
Huan Feng and
Xiong Yu
Energy, 2018, vol. 153, issue C, 349-358
Abstract:
Biodiesel has the potential to replace the conventional diesel fuel, thus the increasing interest and research in the use of biodiesel fuels for transport applications to improve the emisions. In this work, the spray characteristics of diesel with hydrogenated catalytic biodiesel (HCB) fuel blends were investigated in a constant volume combustion chamber to provide an accessible tool to predict spray behavior based on cheap and off-engine condition measurements for applying HCB in diesel engines. As two important indexes of spray characteristics, the liquid penetration and vapor penetration were researched using Mie-scattering and Schlieren methods under non-reacting conditions to avoid the influence of combustion on the mixing and vaporization processes. Besides, the liquid length of blended fuel under reacting conditions is measured by a laser system to figure out the effect of combustion on atomization process. The results show that the liquid length decreases with increasing HCB ratio in the blends and the fuel density has greater influence on the liquid length than the fuel viscosity. By comparing the liquid length result, a slight difference between the different blends on vapor penetration was observed under the same boundary condition. The spray characteristics of blends indicate that HCB is a good blending component for blended fuel which can be applied in diesel engine directly in large-scale. Moreover, the liquid length of laser Mie-scattering method is higher than that of LED Mie-scattering and the liquid length under reacting conditions is shorter than that of inert conditions.
Keywords: Hydrogenated catalytic biodiesel; Laser Mie-scattering; Liquid length; Vapor penetration; Constant vloume combustion chamber (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218306492
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:153:y:2018:i:c:p:349-358
DOI: 10.1016/j.energy.2018.04.045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().