Enhanced and speedy energy extraction from a scaled-up pressure retarded osmosis process with a whale optimization based maximum power point tracking
Yingxue Chen,
Ranjan Vepa and
Mohammad Hasan Shaheed
Energy, 2018, vol. 153, issue C, 618-627
Abstract:
This paper proposes a novel maximum power point tracking scheme for efficient and speedy extraction of maximum power from a pressure retarded osmosis process subject to rapid salinity variation. The scheme is designed using the Whale Optimization with Differential Evolution algorithm, a nature-inspired metaheuristic technique. The algorithm has facilitated the developed maximum power point tracking controller with features that have helped overcome limitations such as lower tracking efficiency and steady state oscillations as encountered in the conventional methods. Previously, a number of widely used algorithms including perturb & observe, incremental mass resistance and mass feedback controller were used to design maximum power point control schemes for a PRO process to reduce power loss due to rapid salinity variation. However, in using these techniques, a trade-off between the oscillations and the respond time was required to adjust the operation. The proposed scheme is used to solve this problem and is implemented in simulation on a scaled-up PRO system. The performance of the scheme is compared with some popularly used maximum power point tracking controllers. It is observed from results that the proposed method not only outperforms other widely used methods but is also more robust.
Keywords: Maximum power point tracking; Whale optimization with differential evolution; Pressure retarded osmosis; Salinity variation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218306583
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:153:y:2018:i:c:p:618-627
DOI: 10.1016/j.energy.2018.04.052
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().