EconPapers    
Economics at your fingertips  
 

Variable load control strategy for room-temperature magnetocaloric cooling applications

Suxin Qian, Lifen Yuan, Jianlin Yu and Gang Yan

Energy, 2018, vol. 153, issue C, 763-775

Abstract: Room temperature magnetocaloric cooling is more environmental friendly but not yet more energy efficient than the state-of-the-art vapor compression technology. In this paper, we provide one more argument to support magnetic cooling technology, which is the superior energy saving potential under part load conditions. Therefore, magnetic cooling system may not compete with vapor compression under full load nominal condition, but its seasonal or annual overall efficiency could be better when part load characteristics are taken into account. To show the operation feasibility under part load condition, a feedback control strategy is proposed and incorporated into a magnetic cooling system model in Simulink first. The robust control quality is then revealed by numerical simulation studies for five different variable part load profiles. Furthermore, the transient accumulated energy performances are compared with those estimated based on the quasi-steady state condition to simplify the calculation on the overall energy efficiency benefit. Finally, a case study is carried out for unitary air-conditioning application, revealing that the overall energy efficiency is almost twice of the energy efficiency evaluated under full load condition.

Keywords: Not-in-kind cooling; Solid-state cooling; Magnetocaloric cooling; Efficiency; Part load performance; Simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218307175
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:153:y:2018:i:c:p:763-775

DOI: 10.1016/j.energy.2018.04.104

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:763-775