Policies and economic efficiency of China's distributed photovoltaic and energy storage industry
Fei-fei Yang and
Xin-gang Zhao
Energy, 2018, vol. 154, issue C, 221-230
Abstract:
Storage energy is an effective means and key technology for overcoming the intermittency and instability of photovoltaic (PV) power. In the early stages of the PV and energy storage (ES) industries, economic efficiency is highly dependent on industrial policies. This study analyzes the key points of policies on technical support, management drive, and financial support. Focusing on the efficiency of PV power and the power load of users, including households and enterprises, in Shanghai City over 24 h in 2016, this study analyzes the costs, benefits, internal rates of return, and investment recovery periods of distributed PV (DPV) and ES systems in the current policy context. This study also discusses the influences of various policy variables, including the ES battery capacity, the peak-valley price ratio, feed-in tariffs for DPV, and the ratio of grid-connected surplus PV power, on economic efficiency. The results show that in China's current policy context, both household and enterprise users of PV power would gain some economic benefits if PV systems were fitted with aqueous sodium-ion batteries of an appropriate capacity. Finally, this study offers some additional government policy suggestions.
Keywords: Distributed PV; Energy storage; Policy; Economic efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218307515
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:154:y:2018:i:c:p:221-230
DOI: 10.1016/j.energy.2018.04.135
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().