A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting
Yishan Ding
Energy, 2018, vol. 154, issue C, 328-336
Abstract:
Forecasting international crude oil is a well-known issue. The hybrid modeling principle tells us that combining different methods could take full advantage of all the merits and leave out the shortcomings. Therefore, hybrid methodology has been widely used in current research. In this study, a novel decompose-ensemble prediction process combining the ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) is proposed. Moreover, this method, i.e., EEMD-ANN-ADD method, adds the decompose-ensemble to the single AI model to further improve the predicting accuracy. The overall process can be divided into four steps: model selection via Akaike's information criterion (AIC), data decomposition via EEMD, individual prediction via ANN and ensemble prediction through addition ensemble method. To verify the results, we use the official data of oil price to conduct the predicting. The result confirms that “decompose-ensemble” models are better than the normal hybrid one, in terms of prediction accuracy (both level and directional measurement) and modified Diebold-Mariano test. What's more, back to the decompose-ensemble models, the EEMD-based one outperforms the empirical mode decomposition (EMD) one. At last but not the least, AIC gives us reasonable and convincing statement about determining the value of lag. Generally speaking, this novel forecasting technique is a prominent insight for the price of crude oil.
Keywords: Crude oil price prediction; Ensemble empirical mode decomposition; Akaike's information criterion; Hybrid model; Predicting accuracy; Stability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218307497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:154:y:2018:i:c:p:328-336
DOI: 10.1016/j.energy.2018.04.133
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().