Improving the performance of booster heat pumps using zeotropic mixtures
B. Zühlsdorf,
W. Meesenburg,
T.S. Ommen,
J.E. Thorsen,
W.B. Markussen and
B. Elmegaard
Energy, 2018, vol. 154, issue C, 390-402
Abstract:
This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions were analysed with respect to their performance under off-design conditions and their economic potential. The best-performing mixture showed a coefficient of performance (COP) of 9.0 and thereby outperformed R134a by 47%. Although the mixed working fluids resulted in higher investment cost, the economic performance was comparable to the pure fluids. The mixtures showed similar performance as the pure fluids at off-design conditions. It was concluded that the mixtures 50% Propylene/50% Butane and 50% R1234yf/50% R1233zd(E) could considerably improve the thermodynamic performance of the overall heat supply system while being economically competitive to pure fluids.
Keywords: Ultra-low-temperature district heating; Zeotropic mixture; Working fluid selection; Economic analysis; Off-design; System performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218307539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:154:y:2018:i:c:p:390-402
DOI: 10.1016/j.energy.2018.04.137
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().