The power performance of an offshore floating wind turbine in platform pitching motion
Binrong Wen,
Xingjian Dong,
Xinliang Tian,
Zhike Peng,
Wenming Zhang and
Kexiang Wei
Energy, 2018, vol. 154, issue C, 508-521
Abstract:
The platform pitching motion of the Offshore Floating Wind Turbine (OFWT) introduces an additional wind profile to the rotor, which may significantly impact the power performance of the OFWT. In this paper, the power performance of an OFWT in platform pitching motion is investigated using the Free Vortex Method (FVM). Firstly, the pitching and non-pitching cases are compared. Then, the power performance of the OFWT in pitching motions with different amplitudes and frequencies is investigated at the design point (tip speed ratio λ = 7). Afterwards, the reduced frequency k is proposed to integrate the influences of the platform pitching amplitude and frequency. The power performance curves of the pitching OFWT are derived as functions of λ and k in the whole operating region. Results show that as k increases, the mean power output decreases at low λ but increases at high λ. The mean power coefficient declines with the increase of k. The power variation increases with the increases of λ and k. To make up the loss of the mean power coefficient and to mitigate the side effects resulted from the power variation, advanced control strategies and platforms with good motion performances should be developed for OFWTs.
Keywords: Offshore floating wind turbine; Free vortex method; Pitch; Power performance; Reduced frequency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218307564
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:154:y:2018:i:c:p:508-521
DOI: 10.1016/j.energy.2018.04.140
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().