Numerical analysis of a tidal current generator with dual flapping wings
Penglei Ma,
Yong Wang,
Yudong Xie and
Zhipu Huo
Energy, 2018, vol. 155, issue C, 1077-1089
Abstract:
Flapping wings, inspired by the mechanism of birds and fish, can act as generators to harvest energy from tidal currents. The hydraulic system is simplified as a spring-damper system to establish the coupling equations relating to the wing motion and the hydrodynamic forces. To provide guidance for design of a fully flow-induced flapping wings energy harvesting system, the behaviors of both system response and energy extraction performance are analyzed using two-dimensional numerical approach. Depending on the rotary actuator radius R, and the volume ratio β between the cylinder and rotary actuator, three distinguishable behaviors are observed in the system response and energy extraction performance. At larger R and smaller β, the dual wings tend to undergo a damped reduction flapping motion because the pitching motion consumes a significant amount of energy. Both decreasing R and increasing β can reduce the energy consumption of the pitching motion, and thus allow the dual wings to achieve a sustainable flapping motion. Although an irregular response can achieve a self-sustained flapping motion, it is unfavorable owing to its unstable power output. The regular response essential for stable energy harvesting is realized over a range of coupling parameters. The energy extraction performance of the system is closely associated with β but also slightly depends on R.
Keywords: Tidal current generator; Dual flapping wings; Energy extraction; Hydraulic coupling system; System response; Flow-induced (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:1077-1089
DOI: 10.1016/j.energy.2018.05.035
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().