Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions
Dongwoo Kim,
Kang Sub Song,
Junyub Lim and
Yongchan Kim
Energy, 2018, vol. 155, issue C, 117-127
Abstract:
The objective of this study is to optimize the performance of a two-phase injection (TPI) heat pump considering annual performance factor (APF) and life cycle climate performance (LCCP). The performances of non-injection (NI), vapor injection (VI), and TPI heat pumps are measured under various outdoor temperatures. Based on the measured data, artificial neural network models for the NI, VI, and TPI heat pumps are developed to predict the performance indexes during cooling and heating seasons. As a result, the TPI heat pump shows higher heating capacity than the NI and VI heat pumps with a lower compressor discharge temperature in cold weather conditions. Therefore, the application of the TPI has a merit on reducing the size of the heat pump due to its lower back-up heater loss and over-capacity penalty. When the objective function maximizes the APF for system optimization in three climate regions, the TPI heat pump shows a 1.4–2.7% higher APF than the NI heat pump, and a 11.1%–18.1% smaller optimum rated heating capacity.
Keywords: Two-phase injection; Optimization; Annual performance; LCCP; Artificial neural network (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308661
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:117-127
DOI: 10.1016/j.energy.2018.05.046
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().