Investigation of n-dodecane pyrolysis at various pressures and the development of a comprehensive combustion model
Meirong Zeng,
Wenhao Yuan,
Wei Li,
Yan Zhang and
Yizun Wang
Energy, 2018, vol. 155, issue C, 152-161
Abstract:
n-Dodecane combustion was investigated experimentally and numerically in present study. Pyrolysis experiments of n-dodecane at pressures of 0.0066, 0.039, 0.197 and 1 atm, temperatures from 750 to 1430 K were studied in a flow reactor. Mole fractions of n-dodecane, argon and pyrolysis products (including active radicals) were evaluated. A kinetic model of n-dodecane was developed by validating both present and literature reported experiments. The rate of production analysis reveals H-abstraction and CC bond fission reactions are main consumption pathways of n-dodecane. The β-CC scission reactions of alkyls contribute to the formation of alkenes, which are mainly consumed via the allylic CC fission reactions. As a soot precursor, benzene is largely produced from the recombination of C3 species. Moreover, effects of carbon chain length on flow reactor pyrolysis were investigated for n-decane, n-dodecane and n-tetradecane. The decay of n-tetradecane is the fastest, followed by n-dodecane and n-decane, indicating that the pyrolysis reactivity of n-alkanes increases as the carbon chain length increases from C10 to C14n-alkanes. Ignition delay times and laminar burning velocities (LBVs) of n-alkanes under similar conditions were also compared, the result shows that effects of the carbon chain length on ignition delay times and LBVs are slight.
Keywords: n-Dodecane; Flow reactor pyrolysis; Kinetic model; Experimental validation; Soot precursors (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:152-161
DOI: 10.1016/j.energy.2018.04.177
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().