EconPapers    
Economics at your fingertips  
 

Statistical modeling and optimization of the combustion efficiency in cement kiln precalciner

S. Fellaou, A. Harnoune, M.A. Seghra and T. Bounahmidi

Energy, 2018, vol. 155, issue C, 351-359

Abstract: Cement industry is highly energy and emissions intensive. Thermal energy is majorly used in the kiln and calciner systems, accounting for over 90% of total energy use in cement plant, and virtually all of the fuel use. Therefore, the precalciner is one of the key equipment in cement manufacturing process impacting the energy efficiency of the pyroprocessing unit. The purpose of this paper is to demonstrate the potential of statistical modeling to support the optimization of precalciners. According to the current knowledge of the authors, this is the first investigation using statistical models to optimize combustion system operating conditions by analyzing historical and experimental design data. Multiple linear regressions were obtained for each of the two approaches with statistically comparable variances. It should be noted that the optimum obtained with the experimental design is better because the corresponding model describes a larger range of operating variables. On the basis of the experiment-based model, 60% of the total unburned organic carbon could be reduced.

Keywords: Modeling; Experimental design; Historical data; Optimization; Combustion; Precalciner (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308041
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:351-359

DOI: 10.1016/j.energy.2018.04.181

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:351-359