Forecasting crude oil price: Does exist an optimal econometric model?
Vinicius de Albuquerquemello (),
Rennan Kertlly de Medeiros,
Cássio Besarria and
Sinézio Fernandes Maia
Energy, 2018, vol. 155, issue C, 578-591
Abstract:
The drastic reduction in oil prices after 2014 rekindled its stochastic characteristics of not settling around a mean and having unexpected high volatility. Thus, creating a branch of empirical literature devoted to the study of structural breaks in oil price longitudinal data, its treatment and forecasting. In that regard, this paper estimate and compare the accuracy measurements of different methodologies and propose the use of a Self-Exciting Threshold Auto-regressive - SETAR model. This approach automatically allows for regime switching after a threshold, hence achieving a Root Mean Square Error - RMSE of 2%, in contrast to 10% of other models commonly used. Moreover, the comparison with previous studies pointed out that the SETAR model surpasses most of the oil price prediction methods in relation to its accuracy, or because of its simplicity, since it does not require great computational effort or difficult analytical skills.
Keywords: Forecasting; Oil prices; Accuracy; VAR; SETAR (search for similar items in EconPapers)
JEL-codes: C53 Q41 Q43 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308120
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:578-591
DOI: 10.1016/j.energy.2018.04.187
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().