A comprehensive analysis of energy and exergy characteristics for a natural gas city gate station considering seasonal variations
Mohammad Olfati,
Mehdi Bahiraei,
Setareh Heidari and
Farzad Veysi
Energy, 2018, vol. 155, issue C, 721-733
Abstract:
Comprehensive energy and exergy analyses are conducted on a City Gate Station (CGS) having nominal capacity of 20,000 SCMH. For this purpose, thermodynamic properties of Natural Gas (NG) fed into the CGS are firstly determined using American Gas Association Equation of State (AGA-8 EOS). Then, a quantitative analysis is carried out to explore magnitude and exact locations of energy/exergy losses as well as exergy destructions. To this end, four different seasonal strategies are regarded. In all strategies, the largest losses occur within the stack. Although from energy viewpoint, the regulator is a high-efficiency equipment, it is found to be the most exergy destructive component in the CGS. Moreover, maximum and minimum exergy losses occur in the winter (15.33 kW) and summer (1.60 kW), respectively. The best performance based on the second law of thermodynamics for the CGS occurs in the winter with exergy efficiency of 77%, whereas the lowest one happens in the summer with exergy efficiency of 69%. The exergy destruction due to pressure drop in filter and pipes are insignificant. The results obtained from this study can be employed as a guide to reduce exergy destruction in the whole CGS with recognition of the main sources of irreversibility.
Keywords: Energy analysis; Exergy analysis; City gate station; American gas association equation of state; Seasonal strategies; Second law efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308892
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:721-733
DOI: 10.1016/j.energy.2018.05.069
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().