EconPapers    
Economics at your fingertips  
 

Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass

Pei-Gao Duan, Shi-Kun Yang, Yu-Ping Xu, Feng Wang, Dan Zhao, Yu-Jing Weng and Xian-Lei Shi

Energy, 2018, vol. 155, issue C, 734-745

Abstract: Herein, we report on a combined process that incorporates hydrothermal liquefaction (HTL) and supercritical water gasification (SCWG) to improve energy recovered from algal biomass. Eight algal biomasses, including four microalgae and four macroalgae with a large difference in biochemical compositions, were screened for this dual process. The algal biomass feedstocks significantly affected the carbon and energy distribution in the product fractions (crude bio-oil, solid, gas, and water-soluble products). 62.50–71.34% energy of microalgae and 6.03–41.06% energy of macroalgae could be recovered as crude bio-oil. 11.86–21.55% carbon of the microalgae and 8.01–15.82% carbon of the macroalgae was distributed in the HTL process water in form of water soluble products after the HTL process. 14.3–33.7% energy of microalgae and 30.18–36.34% energy of macroalgae was retained in the HTL process water. SCWG could convert the organics in the HTL process water into fuel gases consisting mainly of H2 and CH4. 54–91% carbon of the HTL process water was transformed into the fuel gases, which correspond 5.53–18.30% energy of the algal biomass. Thus, this work shows that the integration of HTL and SCWG could improve energy recovery from algal biomass relative to the HTL process alone.

Keywords: Algae; Integration; Hydrothermal liquefaction; Supercritical water gasification; Energy recovery (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308648
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:734-745

DOI: 10.1016/j.energy.2018.05.044

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:734-745