Multistep sequestration and storage of CO2 to form valuable products using forsterite
Waseem Raza,
Nadeem Raza,
Henry Agbe,
R.V. Kumar,
Ki-Hyun Kim and
Jianhua Yang
Energy, 2018, vol. 155, issue C, 865-873
Abstract:
The potential use of mineralogical carbonation is greatly acknowledged not only in reducing CO2 emissions through carbon capture and storage (CCS) but also in producing industrially viable products. The direct carbonation of stable silicate minerals by supercritical CO2 is unrealistic due to the low conversion efficiencies. The natural abundance of silicate minerals (e.g., olivine) is theoretically sufficient to fix the entire quantity of man-made CO2 emissions, while carbonation of sorbents obtained from the dissolution of silicate rocks could proceed in a multistep (or continuous) process. In this work, the optimum experimental conditions for a multistep procedure of sequestration of minerals and conversion of CO2 into valuable products were investigated using synthetic forsterite. In this research, magnesium sulfate obtained from the dissolution of forsterite in aqueous H2SO4 was successfully carbonated to produce valuable byproducts (e.g., silica and hydrates of magnesite) with an economical carbonation as a means of CO2 mitigation. Hydromagnesite, while being commercially applied in various fields (e.g., fire retardation and catalysis), can be transformed to magnesite which is stable for millions of years.
Keywords: Fossil fuels; CO2 sequestration; Mineralogical carbonation; Forsterite; Hydromagnesite; Lixiviants (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308971
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:865-873
DOI: 10.1016/j.energy.2018.05.077
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().