EconPapers    
Economics at your fingertips  
 

Investigation of hydrodynamic and heat transfer performances in grille-sphere composite pebble beds with DEM-CFD-Taguchi method

Yingxue Hu, Jian Yang, Jingyu Wang and Qiuwang Wang

Energy, 2018, vol. 155, issue C, 909-920

Abstract: In the present paper, grille-sphere composite pebble bed (GSCPB) is developed to improve the hydrodynamic and heat transfer performances for high temperature gas cooled reactor with 10 MW (HTR-10). The fluid flow and heat transfer characteristics in typical GSCPB channels are numerically investigated, and the effects of typical parameters on the pressure drop and maximum pebble temperature inside are carefully analyzed with Taguchi method. Firstly, in the GSCPB bed, the grille can not only support the pebbles to achieve a structured packing quickly, but can also enhance convective heat transfer from pebbles to the fluid. With proper design of grille inside, the heat transfer rate would be improved and the pressure drop would be reduced in GSCPB channel when compared with traditional random pebble bed. Secondly, the effect of sub-channel width to pebble diameter ratio (N) on both the hydrodynamic and heat transfer performances in GSCPB channel is quite significant. The contribution ratios of N on the pressure drop and maximum pebble temperature in GSCPB channel are of 86.3% and 81.0%, respectively. Finally, with Taguchi method, the optimum design parameter combinations are obtained for the lowest pressure drop and lowest maximum pebble temperature in GSCPB channels, respectively.

Keywords: Pebble bed; Grille-sphere composite packing; Heat transfer; Discrete element method; Computational fluid dynamics; Taguchi method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218308387
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:155:y:2018:i:c:p:909-920

DOI: 10.1016/j.energy.2018.05.018

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:909-920