EconPapers    
Economics at your fingertips  
 

Comparative thermodynamic evaluation of a geothermal power plant by using the advanced exergy and artificial bee colony methods

Osman Özkaraca, Ali Keçebaş and Cihan Demircan

Energy, 2018, vol. 156, issue C, 169-180

Abstract: In this study, the thermodynamic performance of a binary geothermal power plant (GPP) is comparatively evaluated using the exergy analysis and optimization method. Thus, in addition to routes to improve the thermodynamic performance of the system, the thermodynamic relationships between the system components and improvement performances of the components are determined. With this aim, the Sinem GPP located in Aydın province in Turkey as a real system is selected. All data from the system are collected and a numerical model simulating the real system is developed. On the developed model, the conventional and advanced exergy analyses for exergy analysis and the artificial bee colony (ABC) method for optimization process are performed. The results of the study show that total exergy efficiencies of the conventional exergy analysis, advanced exergy analysis and artificial bee colony are determined as 39.1%, 43.1% and 42.8%, respectively. The exergy efficiency obtained from advanced exergy analysis is higher compared to the other two methods. This is due to the fact that theoretical and unavoidable operation assumptions in advanced exergy analysis are arbitrary as a single value depending on the decision maker. However, decision variables in the ABC method are within certain constraints chosen by the decision maker. It is better to select constraint limits instead of an arbitrary single value selection. Therefore, its arbitrary values should be confirmed with any optimization method. Additionally, the highest exergy destruction identified in the three methods is occurred in heat exchangers as the condenser and vaporizer.

Keywords: Geothermal power plant; Thermal performance improvement; Optimization; Advanced exergy analysis; Artificial bee colony (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218309125
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:156:y:2018:i:c:p:169-180

DOI: 10.1016/j.energy.2018.05.095

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:169-180