Analysis of recycled aggregates effect on energy conservation using M5′ model tree algorithm
Fatemeh Afsarian,
Aniseh Saber,
Ali Pourzangbar,
Abdul Ghani Olabi and
Mohammad Ali Khanmohammadi
Energy, 2018, vol. 156, issue C, 264-277
Abstract:
Sustainability targets can be achieved by pursuing environmental-friendly and energy-efficient design and construction. Being sub-standard in terms of stability, buildings would pose serious threats to the environment and natural sources. Therefore, having sustainable design and construction is of great importance in building industry. To achieve sustainability targets, recently recycled aggregates attracted special attention. While several studies have been conducted on the thermal and hydrometric characteristics of recycled materials, there are few studies available on the evaluation of the applicability of these materials in buildings. Accordingly, in this study, the performance of four different recycled concrete panels, produced using waste and recycled materials, has been investigated in terms of energy consumption in a residential building using Design-Builder software. Moreover, a model tree algorithm (M5′) has been used to evolve formulas for predicting the total energy consumption in the reference building. To do this, up to 1200 simulations using various recycled materials and glass areas have been carried out in Design-Builder software. The performances of the developed formulas have been evaluated on the basis of statistical measures. The results suggest that M5′ could serve as a valuable tool for the estimation of total energy consumption in residential buildings.
Keywords: Energy conservation; Recycled aggregates; M5′ model tree algorithm; Residential building (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218309198
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:156:y:2018:i:c:p:264-277
DOI: 10.1016/j.energy.2018.05.099
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().