EconPapers    
Economics at your fingertips  
 

Batch evaporation power cycle: Influence of thermal inertia and residence time

Moritz Gleinser, Christoph Wieland and Hartmut Spliethoff

Energy, 2018, vol. 157, issue C, 1090-1101

Abstract: The transition in the energy market and the growing share of renewable energy sources have been boosting the research in new power cycles. For example, the concept of batch evaporation in the Misselhorn Cycle promises to increase the overall efficiency in low-temperature applications and therefore saves resources. In this paper, a dynamic evaporator model was extended in order to prove the feasibility of the Misselhorn Cycle despite its transient character. In this context, the thermal capacity of the wall material as well as the residence time of the heat source medium were added. The previous, underlying model predicted an improved system efficiency for the Misselhorn Cycle of about 50% compared to an Organic Rankine Cycle (ORC) at 100C∘. Initially, the results of the extended model showed a negative influence of the inertial effects on the possible net power output (advantage over ORC only 10%). However, an unheated discharge phase and reduced dimensions of the heat exchanger could compensate these drawbacks and achieved results (about 40% better than ORC) in the same range as the previous, simple model predicted. These findings prove the general practical feasibility of the Misselhorn Cycle.

Keywords: Misselhorn cycle; Dynamic simulation; Waste heat recovery; Trilateral cycle (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218309794
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:157:y:2018:i:c:p:1090-1101

DOI: 10.1016/j.energy.2018.05.145

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:1090-1101