EconPapers    
Economics at your fingertips  
 

Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings

Alfonso Capozzoli, Marco Savino Piscitelli, Silvio Brandi, Daniele Grassi and Gianfranco Chicco

Energy, 2018, vol. 157, issue C, 336-352

Abstract: The energy management of buildings currently offers a powerful opportunity to enhance energy efficiency and reduce the mismatch between the actual and expected energy demand, which is often due to an anomalous operation of the equipment and control systems. In this context, the characterisation of energy consumption patterns over time is of fundamental importance. This paper proposes a novel methodology for the characterisation of energy time series in buildings and the identification of infrequent and unexpected energy patterns. The process is based on an enhanced Symbolic Aggregate approXimation (SAX) process, and it includes an optimised tuning of the time window width and of the symbol intervals according to the building energy behaviour. The methodology has been tested on the whole electrical load of buildings for two case studies, and its flexibility and robustness have been confirmed. In order to demonstrate the implications for a preliminary diagnosis, some unexpected trends of the total electrical load have also been discussed in a post-mining phase, using additional datasets related to heating and cooling electrical energy needs.

Keywords: Energy consumption; Building energy management; Adaptive symbolic aggregate approximation; Anomaly detection; Data mining; Smart buildings (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218309617
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:157:y:2018:i:c:p:336-352

DOI: 10.1016/j.energy.2018.05.127

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:336-352