EconPapers    
Economics at your fingertips  
 

Hydrofluoroolefin-based novel mixed refrigerant for energy efficient and ecological LNG production

Muhammad Abdul Qyyum and Moonyong Lee

Energy, 2018, vol. 157, issue C, 483-492

Abstract: To satisfy the worldwide demand for energy, the liquefied natural gas (LNG) industry has grown significantly in the past three decades owing to its low CO2 emissions and high thermal efficiency compared to the other available energy resources. However, the process of natural gas liquefaction is generally considered to be energy-intensive. In this context, a novel hydrofluoroolefin (HFO-1234yf)-based mixed refrigerant, with the advantages of zero ozone depletion and minimal global warming potential, is proposed to liquefy natural gas in an ecological and energy-efficient manner. A new liquefaction cycle using the HFO-based mixed refrigerant is developed to fully utilize its potential. The results reveal that the overall energy requirement for natural gas liquefaction can be reduced by 46.4% compared with a single mixed refrigerant process, 42.5% compared with a dual mixed refrigerant process, and 36.3% compared with the Linde–single mixed refrigerant process. Economic analysis based on the capacity parameters of each equipment is also performed to emphasize the commercial feasibility of the proposed LNG process. The proposed HFO-based mixed refrigerant system provides an innovative solution to improve the ecological aspects and energy efficiency of natural gas liquefaction processes.

Keywords: Natural gas liquefaction; LNG; HFO-1234yf; Ecological mixed refrigerant; Energy efficient (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421831017X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:157:y:2018:i:c:p:483-492

DOI: 10.1016/j.energy.2018.05.173

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:483-492