EconPapers    
Economics at your fingertips  
 

A two-stage reactive power optimization in transmission network incorporating reserves from voltage-dependent loads

Hongyang Jin, Zhengshuo Li, Hongbin Sun, Qinglai Guo and Bin Wang

Energy, 2018, vol. 157, issue C, 752-763

Abstract: With the integration of intermittent resources, more reserves are required for uncertainties. Traditionally, reactive power optimization in transmission network focuses on loss minimization problems, regarding loads as voltage-independent injections. In fact, the bus voltage magnitude affects the load active/reactive injection, providing a possibility for system operators to regulate the power of loads through voltage regulation. Inspired by this inherent feature of loads, this paper considers the regulation of voltage-dependent loads (VDLs) for fast reserves through reactive power optimization and voltage control under the coordination of transmission and distribution networks. A two-stage multi-objective optimal power flow model is developed to incorporate reserves from VDLs. The first stage is to optimize the minimization of losses and the maximization of the reserves that the VDLs can provide, which is modeled as an AC optimal power flow problem. In the second stage, it is verified whether the reserves from the first stage can be delivered by voltage regulation to settle down the possible imbalance power in the power system. Case studies show that the proposed method can estimate the amount of reserves from VDLs and optimize the bus voltages accordingly.

Keywords: Voltage dependent load; Reactive power optimization; Two-stage optimization; Fast reserve (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421830937X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:157:y:2018:i:c:p:752-763

DOI: 10.1016/j.energy.2018.05.112

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:752-763