EconPapers    
Economics at your fingertips  
 

Influence of different bed material mixtures on dual fluidized bed steam gasification

A.M. Mauerhofer, F. Benedikt, J.C. Schmid, J. Fuchs, S. Müller and H. Hofbauer

Energy, 2018, vol. 157, issue C, 957-968

Abstract: Within this paper, investigations to convert softwood with four different types of bed materials in the 100 kWth dual fluidized bed steam gasification pilot plant at TU Wien are presented and discussed. The results of ten different experiments were compared. Quartz, olivine and feldspar were mixed with limestone in mass ratios of 100/0, 90/10, 50/50 and 0/100. Limestone was used due to its catalytic activity at high temperatures as CaO and thus enhanced tar, char and water conversion of quartz, olivine and feldspar. The admixture of limestone to quartz, olivine and feldspar shifted the product gas compositions towards higher hydrogen and carbon dioxide and lower carbon monoxide contents. By using 100 wt.-% limestone as bed material a hydrogen content of 47.4 vol.-% could be generated. Additionally, the tar concentrations as well as the tar dew points decreased and especially the heavy tar compounds could be reduced. Already small amounts of limestone (<10 wt.-%) to the bed material mixture influenced tar reduction in a positive way. The low abrasion resistance of limestone resulted in increasing dust contents by increasing its amount. However, this could be balanced by the specific design of the separation system of the advanced pilot plant.

Keywords: Tar reduction; Catalytic activity; Limestone/CaO; Olivine; Quartz; Feldspar (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218310028
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:157:y:2018:i:c:p:957-968

DOI: 10.1016/j.energy.2018.05.158

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:957-968