Energy extraction of wave energy converters embedded in a very large modularized floating platform
Haicheng Zhang,
Daolin Xu,
Huai Zhao,
Shuyan Xia and
Yousheng Wu
Energy, 2018, vol. 158, issue C, 317-329
Abstract:
An embedded wave energy converter installed in a super-scale modularized floating platform is proposed for wave-induced kinetic energy extraction. The platform consists of multiple blocks where on-top huge modular decks are flexibly supported by floating semi-submergible modules via elastic cushions. For the connection between adjacent blocks, neighboring decks are joined by rigid hinges and neighboring floating modules are connected by two piston-type devices that are embedded wave energy converters (WEC), designed by the linear hydraulic power take-off (PTO) mechanism. Based on linear wave theory and rigid module flexible connector (RMFC), the dynamic model for the modularized floating platform is developed by using a network modeling method. In numerical case studies, the wave energy extraction of a five-block platform is investigated and the design region for the key parameters of the WEC is recommended. In addition the effects of the WECs on the dynamic responses and the connector loads of the modularized platform are studied. These results can improve the understanding on the performance of the specific platform.
Keywords: Wave energy farm; Very large floating structure; WEC; PTO (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218310909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:158:y:2018:i:c:p:317-329
DOI: 10.1016/j.energy.2018.06.031
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().