EconPapers    
Economics at your fingertips  
 

Practical limit of energy production from seawater by full-scale pressure retarded osmosis

Minseok Kim and Suhan Kim

Energy, 2018, vol. 158, issue C, 373-382

Abstract: Pressure retarded osmosis (PRO) produces energy using the salinity gradient between two solutions (draw solution (DS) and feed solution (FS)). Net energy production (NEP) of PRO was analyzed using a module-scale model developed in this work. The NEP analysis determines net energy from PRO by the difference between energy production by turbine and energy consumption by DS, FS, and booster pumps. Especially, the effects of system capacity and membrane fouling on NEP are investigated using a module-scale modeling approach for the first time. The maximum net specific energy (NSE) per PRO system capacity (sum of DS and FS flow rates) is close to 0.1 kWh/m3 without pretreatments. The maximum NSE decreases at smaller system capacities, and it becomes around 0.03 kWh/m3 from a PRO system with 520 m3/d as capacity. NSE from seawater decreases in the presence of membrane fouling, but it remains positive under the severe fouling condition where water flux decreases by 32% if the system capacity is large enough to have efficient pumps and turbines.

Keywords: Pressure retarded osmosis (PRO); Module-scale model; Seawater; Net specific energy (NSE); System capacity; Fouling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:158:y:2018:i:c:p:373-382

DOI: 10.1016/j.energy.2018.06.042

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:373-382