Experimental study on the flame propagation and laminar combustion characteristics of landfill gas
Wen Zeng,
Jing Liu,
Hongan Ma,
Yu Liu and
Aiguo Liu
Energy, 2018, vol. 158, issue C, 437-448
Abstract:
Biogas is the least expensive renewable energy source with an almost neutral balance of CO2 emissions. As a type of biogas, landfill gas could potentially be used in the internal combustion engines, gas turbines, and industrial furnaces. However, the combustion characteristics of landfill gas, which are the foundations of further use of the landfill gas, are not clear. In this paper, the flame propagation characteristics of landfill gas were measured in a constant volume combustion chamber using a schlieren system. The experiments were conducted over the equivalence ratio range of 0.7–1.4, the pressure range of 0.1–0.5 MPa, the temperature range of 290–380 K, and the methane contents of 47%, 55.5% and 59%. The main influencing factors of the combustion stability and laminar combustion velocity of landfill gas in laminar combustion were also investigated. The results showed that the preferential diffusion or buoyancy instability appeared during the flame propagation process, and flame front exhibited irregular cellular structure and protuberances or the flame core moved upward under the condition that the Markstein number was small or the laminar burning velocity was lower than 0.15 m/s. At the same time, the Markstein number and the stability of the flame front decreased with a lower equivalence ratio and methane content or higher initial pressure. However, the effect of the initial temperature on the Markstein number was not obvious. The unstretched flame velocity and the laminar combustion velocity initially increased and then gradually decreased with the increase of the equivalence ratio, and the maximum values were measured under the condition that the equivalence ratio was 1.1. Furthermore, the laminar combustion velocity of landfill gas decreased with a higher initial pressure or lower initial temperature and methane content.
Keywords: Laminar combustion velocity; Combustion stability; Landfill gas; Flame propagation characteristics; Markstein number (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311277
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:158:y:2018:i:c:p:437-448
DOI: 10.1016/j.energy.2018.06.062
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().