CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects
Alfredo Iranzo and
Pierre Boillat
Energy, 2018, vol. 158, issue C, 449-457
Abstract:
This work presents the application of CFD (Computational Fluid Dynamics) to the unsteady gas transport modelling in the cathode side of a Polymer Electrolyte Membrane (PEM) fuel cell during an AC impedance test. The CFD model development and results during AC impedance experiments for 1D and 2D cases are presented and discussed. The effect of liquid water was considered by modelling scenarios with saturated (according to water profiles obtained experimentally) and dry Gas Diffusion Layers (GDL). It was observed that the magnitude of the transient variations of the oxygen concentration within the GDL is dependent on the frequency of the AC signal during the test, given the differences between the diffusion characteristic time and the oxygen consumption characteristic time. For the 2D model where the differences under-the-rib to under-the-channel can be analysed, it was verified that oxygen concentration is much higher under the channel, however the amplitude of the oscillations during AC testing are significantly higher under the rib. When comparing saturated and dry GDLs for both models, it was verified that oxygen concentrations are higher for dry GDLs, but the amplitude of the oscillations is however higher for saturated GDLs.
Keywords: PEM; Fuel cell; CFD; Model; AC impedance; Gas transport (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311046
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:158:y:2018:i:c:p:449-457
DOI: 10.1016/j.energy.2018.06.039
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().