EconPapers    
Economics at your fingertips  
 

Numerical analysis of a non-steady state phenomenon during the ignition process in a condensing boiler

Manuel Mohr, Marko Klančišar, Tim Schloen, Niko Samec and Filip Kokalj

Energy, 2018, vol. 158, issue C, 623-631

Abstract: This paper presents the most appropriate numerical approach for investigation of the ignition phenomena of the premixed confined combustion in a condensing boiler. A transient simulation with the coupling of the burning velocity model was sufficient enough to describe fully the phenomena that are responsible for the ignition sequence and the flame stabilization, representing most of the actual ignition problems in general. Detailed simulation investigation with the ignition model leads to better comprehension of the whole flame stabilization process and, as a consequence, it facilitates the optimization potential of the global ignition process in boilers. Four different ignition power loads were observed in the investigation. Also, the ratio between oxidizer (air in our case) and the fuel (Methane) was based on the normal combustion process for the described condensing boiler. The numerical results were validated with the experimental set up and testing. Results comparison shows very good correlation of numerical simulation with the experimental case. The ignition times both tested and simulated, that have a significant impact on flame stabilization, are in very good correlation. Also, very good correlations were obtained between the pressure profiles of the numerical and experimental studies.

Keywords: Premixed combustion; Computational fluid dynamics; Burning velocity model; Ignition; Flame stabilization; Condensing gas boiler (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311034
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:158:y:2018:i:c:p:623-631

DOI: 10.1016/j.energy.2018.06.038

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:623-631