EconPapers    
Economics at your fingertips  
 

A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis

J.A. Soriano, C. Mata, O. Armas and C. Ávila

Energy, 2018, vol. 158, issue C, 845-858

Abstract: The injection rate curve is an important input parameter in the thermodynamic diagnosis and in the predictive models, and it can also be used to simulate fuel sprays under different operating conditions. In this work, a zero-dimensional fuel injection rate model is proposed from experimental data obtained from a common-rail injection system with two solenoid-operated injectors. The model proposed is a useful tool when the internal component's dimensions of the injector are unknown. The presented model only requires the injection pressure, the injector energization signal, the total fuel mass consumed per stroke, the geometry and the holes number of the fuel injector and, finally, some physical properties of fuel. The model has been applied to two different solenoid-operated injectors and two fuels. The comparative results between the experimental and the modelled fuel injection rate show excellent results despite the simplicity of the experimental data requirements. The effects of the introduction of the modelled and measured fuel injection rate in a thermodynamic diagnostic tool are shown. This proposed model can be a useful, simple and alternative tool for estimating rates of injection without the need to carry out a test of the rate of injection.

Keywords: Diesel injection; Solenoid-operated injector; Fuel injection modelling; Thermodynamic diagnosis; Zero-dimensional model; GTL fuel (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311198
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:158:y:2018:i:c:p:845-858

DOI: 10.1016/j.energy.2018.06.054

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:845-858