EconPapers    
Economics at your fingertips  
 

Biodiesel production from waste cooking oil catalyzed by in-situ decorated TiO2 on reduced graphene oxide nanocomposite

Manash Jyoti Borah, Anuchaya Devi, Raktim Abha Saikia and Dhanapati Deka

Energy, 2018, vol. 158, issue C, 881-889

Abstract: Current research reports the synthesis of in-situ TiO2/RGO nanocomposite and used as a heterogeneous catalyst for the transesterification of waste cooking oil into biodiesel. The prepared catalyst was characterized viz. X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA) techniques conforming the successful formation of nanocomposite. The effects of various reaction parameters used for transesterification were examined to optimize the reaction conditions. The best operational conditions were oil to methanol molar ratio of 1:12 at 65 °C with 1.5 wt% catalyst loading and reaction time of 3 h. The catalyst showed good catalytic activity in biodiesel production and biodiesel conversion of 98% was obtained under optimum reaction conditions. Biodiesel conversion was confirmed by Proton Nuclear Magnetic Resonance (1H NMR), Carbon Nuclear Magnetic Resonance (13C NMR) and Gas Chromatography-Mass Spectroscopy (GC-MS) techniques. The excellent catalytic activity of TiO2/RGO could be attributed to the enhanced surface area of the composite.

Keywords: Biodiesel; Nanocomposite; Heterogeneous catalyst; Transesterification (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311447
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:158:y:2018:i:c:p:881-889

DOI: 10.1016/j.energy.2018.06.079

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:881-889