Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo−Nx) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction
Siyu Pan,
Zhuang Cai,
Liu Yang,
Bo Tang,
Xin Xu,
Hun Chen,
Lingling Ran,
Baojian Jing and
Jinlong Zou
Energy, 2018, vol. 159, issue C, 11-20
Abstract:
To endow catalyst supports with excellent co-catalytic activity is an effective way to strengthen methanol-tolerance of Pt-based catalysts towards oxygen reduction reaction (ORR). In this study, nitrogen-doped molybdenum selenide/biomass-derived carbon (N-MoSe2/BC) composite as a Pt-support/co-catalyst is prepared via a synchronous synthesis method to enhance methanol tolerance. The porous structure of N-MoSe2/BC with N-doping can improve the exposure of coordinated Mo–Sex sites along MoSe2 edges and provide the oxygen diffusion channels to promote ORR activity. Pt-N-MoSe2/BC (Pt, 5 wt.%) shows high activity (14.83 mA cm−2) and selectivity (4e− pathway) towards ORR, promising durability (11.9% decline) and excellent tolerance against methanol-crossover effects, which are superior to those of commercial Pt/C (10 wt.%). With the introduction of pyridinic N, graphitic N and Mo−Nx in MoSe2/BC, more active sites on Pt (111) facets are activated to enhance charge transfer efficiency and ORR activity. Both N-species in BC and exposed edge sites in N-MoSe2 contribute to high methanol-tolerance and co-catalytic activity towards ORR. Therefore, the remarkable ORR activity is originated from the synergistic effects among well-distributed Pt, N-species, and active edge sites of MoSe2. Design of porous (N)-MoSe2/BC provides a promising direction for preparation of co-catalyst/support with strong methanol tolerance and ORR activity.
Keywords: Biomass; Co-catalyst; Methanol tolerance; Molybdenum selenide; Nitrogen doping; Oxygen reduction reaction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311794
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:159:y:2018:i:c:p:11-20
DOI: 10.1016/j.energy.2018.06.114
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().