EconPapers    
Economics at your fingertips  
 

Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications

Muhammad Faisal Iqbal, Muhammad Naeem Ashiq, Mahmood-Ul Hassan, Rahat Nawaz, Aneeqa Masood and Aamir Razaq

Energy, 2018, vol. 159, issue C, 151-159

Abstract: Graphene oxide based electrode materials show remarkable electrochemical properties due to the improved specific surface area and electrical conductivity for supercapacitor applications. Hydrothermally synthesized graphene oxide based aluminum sulfide nanowalls on nickel foam (NF) have revealed excellent pseudocapacitive behavior with the specific capacitance 2362.15 F g-1 at 2 mVs-1 as observed through cyclic voltammetry. The galvanostatic charge-discharge measurements confirmed a specific capacitance 2373.51 F g-1 at 3 mAcm−2. Hexagonal phase of the graphene oxide (GO) based Al2S3 nanowalls also showed good discharge time of 820 s and energy density 118.68 WhKg−1 at 3 mAcm−2. Moreover, the fabricated electrode material exhibited good power density 2663.58 W kg-1 at 20 mAcm−2. The impedance results also confirmed the pseudocapacitive characteristics and revealed weak contact and Warburg resistances for the electrode material in half cell. Hence, GO based Al2S3 nanowalls performed as a prominent electrode material for asymmetric supercapacitors. Additionally, electrode material also exhibited excellent symmetric behavior, which again suggested a good electrode structure for supercapacitor applications.

Keywords: Aluminum sulfide; Energy density; Graphene oxide; Specific capacitance; Supercapacitor (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218311885
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:159:y:2018:i:c:p:151-159

DOI: 10.1016/j.energy.2018.06.123

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:151-159