A novel approach for estimating residential space heating demand
Matthias Berger and
Jörg Worlitschek
Energy, 2018, vol. 159, issue C, 294-301
Abstract:
Energy system models on country level usually contain multiple energy carriers at different granularity. While data is comparably rich in terms of temporal and spatial resolution for the electricity part, much less is known for heat. Especially the true demand for heat as a function of usage and time is difficult to obtain. In many cases, energy consumption data (fuel oil, natural gas, district heating etc.) is taken as approximation for the final energy end-use of heat. Different heat distribution technologies bring their own bias on temperature levels and heating hours, like with ground floor heating vs. radiator. Therefore, historic consumption data is not an appropriate base for modelling of energy systems with long prospect. The present research work proposes a novel top-down methodology for generating aggregated load curves on heat demand, with a focus on residential space heating. Maps of population density distribution combined with norm temperature profiles and the definition of heating degree days provides a tempo-spatial map of heating demand. The knowledge of total residential space heating demand is used to identify the aggregated demand curve, suitable for energy system modelling.
Keywords: Energy system modelling; Demand curve; Heating degree days; Mapping; Residential demand; Space heating (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218312039
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:159:y:2018:i:c:p:294-301
DOI: 10.1016/j.energy.2018.06.138
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().