EconPapers    
Economics at your fingertips  
 

Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources

Ehab E. Elattar

Energy, 2018, vol. 159, issue C, 496-507

Abstract: Nowadays, there is a growing interest in the microgrid systems with a high penetration of renewable sources. In this paper, the modified harmony search (MHS) algorithm is proposed to solve the combined economic emission dispatch (CEED) problem of the microgrid taking into account the solar and wind power cost functions. The proposed algorithm can be derived by not only adjusting the parameters but also improving the structure and operation of the original harmony search (HS) algorithm. The solution of the CEED problem of the microgrid taking into account the solar and wind power cost functions is obtained for different scenarios using the MHS algorithm and some recently published algorithms. The results of all scenarios show the effectiveness of the MHS algorithm over other published algorithms employing same data.

Keywords: Modified harmony search; Combined economic emission dispatch; Microgrid; Wind power cost function; Solar power cost function (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218312027
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:159:y:2018:i:c:p:496-507

DOI: 10.1016/j.energy.2018.06.137

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:496-507