EconPapers    
Economics at your fingertips  
 

Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°

Carlos E. Gómez Camacho, Francesco I. Romano and Bernardo Ruggeri

Energy, 2018, vol. 159, issue C, 525-533

Abstract: Recent studies suggest that the supplementation of powdered Fe° generates a positive effect on anaerobic fermentation processes but the exact relationship between metals with biological systems has not been fully elucidated. Experimental tests on dark fermentation (DF) were carried out at different Fe° concentrations. The anaerobic corrosion (AC) of Fe° and the production of H2 through DF of Organic Waste Market (OWM) were tested separately, and subsequently DF tests with Fe° at 1 g/L and 2 g/L were carried out. A macroscopic dynamic study was conducted, using Röels approach based on relaxation times (τR) to establish whether interactions between AC and DF phenomena exist. Experimental bioH2 production and Fe° AC were fit by Gompertz and saturative models, respectively to estimate τR. The results of the macro-analysis suggest that both phenomena are concurrent, with τR of the same order of magnitude, generating a positive symbiotic effect. The experimental tests of hydrogen production via DF in presence of 2 g/L of Fe° showed an increase of 46% compared with the control tests, of amount of gas and a greater H2/CO2 ratio. The results suggest an enhancement of key enzymes activity due to the action of iron increasing bioH2 production.

Keywords: Dark fermentation; Iron-supplementation; Enzymatic enhancement; CO2 reduction; Relaxation time (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218312362
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:159:y:2018:i:c:p:525-533

DOI: 10.1016/j.energy.2018.06.171

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:525-533