EconPapers    
Economics at your fingertips  
 

Multi-objective optimization of multi-period interplant heat integration using steam system

Jiaze Ma, Chenglin Chang, Yufei Wang and Xiao Feng

Energy, 2018, vol. 159, issue C, 950-960

Abstract: This paper proposed a mathematical model for formulating interplant heat exchanger network (HEN) operated under multi-periods. Each individual plant is linked through a centralized utility system and steam is selected as the heat transferring medium. Previous studies on optimizing interplant HENs mainly focus on minimizing the cost of system. In this study, the interplant HEN is optimized with two objectives: minimizing the cost and the environmental impact (EI). The maximum representative approach for the area of exchangers is used to formulate a flexible network that can be operated under the worst condition. A case study is employed to show the effectiveness of the proposed model. Pareto curves are plotted to exhibit the trade-off between the two different objectives. The results show that the utility system occupies a major part of the overall environmental impact, and the construction of exchangers does not exert significant impact on environments. Intensifying the heat integration by increasing heat exchanger areas is an effective approach for reducing environmental impacts of HENs, although it is not cost saving.

Keywords: Multi-objective; Heat integration; Multi-period; MINLP model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218312829
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:159:y:2018:i:c:p:950-960

DOI: 10.1016/j.energy.2018.06.217

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:950-960