Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia
Hai Wang and
Hua Meng
Energy, 2018, vol. 160, issue C, 171-183
Abstract:
An improved thermal transient model was put forward to predict the thermal transient behavior of a long pipe. The model took particular consideration of the influences of the pipe wall's thermal inertia. Then a new 3-order numerical solution was presented to solve the proposed model. The new solution would not only preserve the sharp temperature front during the heat propagation, but also achieve fine computational accuracy even for the coarse grids. In addition, the proposed model and numerical solution could be easily coupled with enormous common hydraulic models to be available to a general district heating (DH) network. The model and solution were validated in a real DH system. The simulation results had a good agreement with the measured data. Furthermore, in order to quantify the degree of the influence of pipe wall's thermal inertia, a practical indicator was developed based on ten types of often-used pipes in the DH projects. The research results showed that, for the large pipes with diameters over DN 200, the simulation errors caused by neglecting the pipe wall's thermal inertia were no more than 10%, which meant it was unnecessary to consider the thermal inertia for larger diameter pipes during the process of modeling.
Keywords: District heating; Thermal transient model; 3-Order numerical solution; Thermal inertia; Pipe network (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218312799
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:160:y:2018:i:c:p:171-183
DOI: 10.1016/j.energy.2018.06.214
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().