Economics at your fingertips  

Hydropower plant operation rules optimization response to climate change

Jianxia Chang, Xiaoyu Wang, Yunyun Li, Yimin Wang and Hongxue Zhang

Energy, 2018, vol. 160, issue C, 886-897

Abstract: Climate change and its uncertainty may cause hydrological cycle and hydropower plant inflow to be changed, which destroy the consistency of hydrological data time series and change the constraint relationships among operation objects of the hydropower plants. So the conventional operation rules cannot be applied to the current hydrological data time series. Therefore, the main goals of this study are to develop adaptive operation chart for the hydropower plant to mitigate climate change impacts, and to propose an optimal adaptive operation chart for cascade hydropower system to increase power generation under the climate change environment. A methodology that combines simulation and optimization models is presented to formulate the optimal adaptive operation rules that consider the joint operation of cascade reservoirs. And the performance of the optimal adaptive operation rules is verified by comparing it with the conventional rules when both been applied to a case study of Hanjiang River hydropower plant reservoirs system. With the optimal adaptive operation chart, the cascade power generation assurance rate increased to 87%, the average annual power generation increased by 16.1%, and the power generation in typical wet, normal and dry years increased by 4.4%, 9% and 7.3%, respectively, compared with the conventional operation chart.

Keywords: Hydropower plant; Climate change; Optimal adaptive operation chart; Simulation and optimization models; The genetic algorithm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-11-10
Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:886-897