EconPapers    
Economics at your fingertips  
 

Improvement of thermal efficiency of wood pellet boilers through the refractory insulation in a combustion chamber and fire tube and baffle modification

Sang Yeol Lee, Kwang Cheol Oh, Chung Geon Lee, La Hoon Cho, Sun Yong Park, In Seon Jeong and Dae Hyun Kim

Energy, 2018, vol. 161, issue C, 1115-1121

Abstract: When wood pellets with high moisture content are used as fuel, the generation of tar during the combustion process increases. As a result, various problems occur, including decrease in thermal efficiency, increase in emission of polluting gases, and the need to clean the combustion chamber. To address this problem, this research applied refractory insulation where a fluid dynamics simulation indicated that thermal stresses most severely occurred, and cleaning was most often required. The fire-tube and baffle were then modified to compensate for the decrease in efficiency. A modified boiler was manufactured based on the simulation, and the experiment was performed. Under the no-tar condition, the thermal efficiencies of the control and modified boilers were found to be 92.20% and 90.63%, but once tar had accreted onto the combustion chamber walls, the modified boiler is more efficient at 82.55% compared to 81.79% for the control boiler. The changes in thermal efficiency due to the presence of tar were predicted using computational fluid dynamics simulations of no-tar and tar-accreted conditions, showing 91.83% and 85.25%, respectively, in the control and 92.05% and 87.18%, respectively, in the modified boiler, providing good agreement with the experimental results.

Keywords: Computational fluid dynamics; Wood pellet; Pellet boiler; Thermal efficiency; Tar (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218314853
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:161:y:2018:i:c:p:1115-1121

DOI: 10.1016/j.energy.2018.07.188

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1115-1121