CO2 removal in tray tower by using AAILs activated MDEA aqueous solution
Pan Zhang,
XiangFeng Tian and
Dong Fu
Energy, 2018, vol. 161, issue C, 1122-1132
Abstract:
A tray tower was designed to verify the absorption performance of CO2 in 1-butyl-3-methylimidazolium glycinate ([Bmim][Gly]), 1-butyl-3-methylimidazolium lysinate ([Bmim][Lys]) and tetramethylammonium glycinate ([N1111][Gly]) activated MDEA (N-methyldiethanolamine) aqueous solutions. The simulated flue gas was composed of 15% (mole fraction) CO2 and 85% N2 and the experiments were performed at 313.2 K. To find a suitable absorbent composition, the mass fractions of MDEA and amino acid ionic liquids (AAILs) respectively ranged from 0.200 to 0.400 and 0.025 to 0.100. The removal efficiency of CO2 (ηCO2) and the overall volumetric mass transfer coefficient (KGav) were determined. The effects of absorbent composition (w), absorbent flow rate (L), gas flow rate (G) and plate number (Np) on ηCO2 and KGav were demonstrated. Our results showed that, when activated by AAILs, MDEA aqueous solution was able to absorb CO2 in tray tower efficiently, and both ηCO2 and KGav were significantly increased, e.g., in the case of wMDEA = 0.200, ηCO2 and KGav were increased from 43.48% to 95.55% and from 0.0069 (kmol m−3 h−1·kPa−1) to 0.0350 (kmol m−3 h−1·kPa−1), respectively, when w[N1111][Gly] was changed from 0 to 0.100, indicating AAILs activated MDEA aqueous solution is of great potential for industrial application in CO2 capture process.
Keywords: Removal efficiency; Overall volumetric mass transfer coefficient; Tray tower; CO2 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218314592
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:161:y:2018:i:c:p:1122-1132
DOI: 10.1016/j.energy.2018.07.162
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().