Comparison of viscosity prediction capabilities of regression models and artificial neural networks
Mert Gülüm,
Funda Kutlu Onay and
Atilla Bilgin
Energy, 2018, vol. 161, issue C, 361-369
Abstract:
Nowadays, biodiesel is seen as an alternative fuel to diesel fuel due to its many advantages such as higher density, cetane number and flash point. Although several methods are available for estimating fuel properties of biodiesel-diesel fuel blends, there is still the lack of works on the comparison of regression models and artificial neural networks (ANN) in predicting viscosities of the blends. Therefore, in this work, (1) optimum reaction parameters providing the lowest viscosity were determined for methanolysis of waste cooking oil, (2) waste cooking oil methyl ester was synthesized based on the determined optimum parameters, and it was mixed with diesel fuel on different volume ratios (3) viscosity measurements of the prepared blends were made at the temperature ranges between 273.15 K and 373.15 K, (4) changes in viscosity versus temperature and biodiesel fraction in blend were investigated and the rational model was proposed, finally (5) the predictive capability of rational model was compared to the three-term Vogel model, Bingham model and ANN by fitting to viscosity data measured by the authors and by Geacai et al. According to results, the measured values by the authors and Geacai et al. are the most accurately predicted by the rational model.
Keywords: Biodiesel; Viscosity; Prediction; Binary blend; Models; Artificial neural networks (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218314270
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:161:y:2018:i:c:p:361-369
DOI: 10.1016/j.energy.2018.07.130
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().