Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm
M. Mohammadian,
A. Lorestani and
M.M. Ardehali
Energy, 2018, vol. 161, issue C, 710-724
Abstract:
Economic dispatch (ED) is a non-convex, non-linear, and non-smooth optimization problem that determines the optimal output power of generation units to meet the forecasted demand from an economic point of view. The objective of this study is to develop and examine the applicability of a newly developed evolutionary particle swarm optimization (E-PSO) algorithm for optimization of the ED problem, where practical constraints, namely, valve-point effects, prohibited operating zones, multiple fuel usage, dynamic ramp rate limits, transmission losses, tie-line capacity, and spinning reserve are considered. In the developed E-PSO algorithm, three operators including mutation, crossover, and selection are applied to enable the search process to skip local optimal points and enhance computational efficiency. To further enhance the performance of the algorithm, an approach is proposed to dynamically adjust the inertia, cognitive, and social weight coefficients to improve exploration and exploitation for smooth convergence. Upon validation of the E-PSO algorithm by means of standard benchmark functions, four case studies including isolated and interconnected power systems are examined and the results are compared with those from other algorithms. The findings show that the proposed features enable the E-PSO algorithm to successfully optimize the ED problem in lower simulation time, while all constraints are met.
Keywords: Economic dispatch; Optimization; PSO algorithm; Power generation; Operation constraints (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218314646
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:161:y:2018:i:c:p:710-724
DOI: 10.1016/j.energy.2018.07.167
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().